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1. Introduction

In Ref. [1], it was argued using two subsystems that ‘‘for the applicability of statistical energy
analysis (SEA), what is important is the presence of large number of modal pairs in the interacting
subsystems and not large number of modes in each subsystem’’. It was further claimed that ‘‘Even
if there is only one mode present in a particular subsystem, if the interacting subsystem has several
modes in the frequency band, SEA is applicable’’. The purpose of this discussion is to highlight
that the conclusions made in Ref. [1] cannot be generalized to using SEA for the analysis of a
system with more than two subsystems and such generalization might incur substantial errors.
2. Key assumptions of SEA

SEA was originally developed based on the power flow analysis of two coupled oscillators. The
well-known expression regarding the time-averaged power flow between the two oscillators is

P̄12 ¼ g12ðē1 � ē2Þ; (1)
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where ē1 and ē2 are the time-averaged total vibrational energies of the two oscillators, respectively,
and g12 is the constant of proportionality as given in Ref. [2]. When extending Eq. (1) to coupled
groups of oscillators, namely subsystems in SEA, normally three assumptions were made [2–4]:
�
 The time-averaged total vibrational energy in a subsystem is equally distributed over all of the
modes in the frequency band (‘‘equipartition of energy’’), and the modal responses are
incoherent so that energy sums apply;
�
 Since at resonance, the magnitude of constant of proportionality g12 for each modal pair is
primarily controlled by the damping of the oscillators, damping values are assumed to be
similar for all the modes within a subsystem and frequency band so that g12 is similar for all the
modal pairs; and
�
 The number of modes is sufficient and equally distributed in the frequency band.

Consider two coupled subsystems with N1 modes in subsystem 1 with N2 modes in subsystem 2
and assume that resonant modes can be described by simple oscillators. Then by applying the first
two assumptions above, a relationship similar to Eq. (1), relating the total power flow between the
two subsystems, P̄12; and the averaged modal energies in each subsystem, ē1h iN1

and ē2h iN2
; can be

obtained [2],

P̄12 ¼ g12
� �

N1N2
N1N2 � ē1h iN1

� ē2h iN2

� �
; (2)

where hiN1N2
represents the average over all the modal pairs. By defining the coupling loss factor

as Z12 ¼ g12
� �

N1N2
N2=o; Eq. (2) becomes,

P̄12 ¼ oZ12N1
Ē1

N1
�

Ē2

N2

� �
; (3)

where Ē1 and Ē2 are the total energies of the two subsystems, respectively. As the third
assumption was not employed, it would appear that the requirement of sufficient number of
modes in each subsystem was irrelevant for Eq. (3) to be valid. This is, however, only true for a
system with only two coupled subsystems. Previous studies have already shown that Eq. (3) is
generally valid for a two-subsystem assembly even though the coupling is strong for which few
modes are in the subsystems [5]. However, for a system with more than two coupled subsystem,
the third assumption is necessary for Eq. (3) to be valid generally within the system.
3. Three coupled oscillators

To help clarify the importance of the third assumption, consider three serially coupled
oscillators as shown in Fig. 1. A detailed analysis of the power flow between the oscillators made
by Sun et al. [6] showed that the time-averaged net power flow from oscillators 1 to 2 is given by,

P̄12 ¼ b12 ē1 � ē2ð Þ þ g13 ē1 � ē3ð Þ; (4)

where ēi is the time-averaged energy of oscillator i ði ¼ 1; 2; 3Þ; while b12 and g13 are constants of
proportionality, both depending on the parameters (mass, damping and stiffness) of all
oscillators. This equation can be easily justified by assuming a very large m3 with asymptotic
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Fig. 1. Three oscillators coupled serially by spring elements.
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solutions of b12 and g13 expected to be g12 and 0, respectively. Eq. (4) indicates that the power flow
between three series coupled oscillators generally consists of two parts, the direct power flow
P̄d ¼ b12 ē1 � ē2ð Þ between the oscillators which are physically coupled; and the indirect power
flow P̄i ¼ g13 ē1 � ē3ð Þ between the oscillators which are not physically coupled. Although it was
shown that reciprocity still holds for either direct or indirect power flow, i.e. b12 ¼ b21; g13 ¼ g31;
the constant of proportionality b12 appears to be different from g12 simply because b12 is a
function not only of the directly coupled oscillators and coupling parameters, but also that of the
indirectly coupled oscillators and coupling parameters.
The dependence of the constant of proportionality b12 on all oscillator parameters adds

difficulties in identifying the key parameters affecting the modal behaviour and characterizing the
power flow in the system explicitly. However, numerical studies showed that the direct power flow
between oscillators 1 and 2 is maximum when a resonance occurs between the two oscillators.
More importantly, when a resonance occurs between oscillators 1 and 2, the ratio of indirect
power flow to the direct power flow reaches a minimum, the indirect power flow between
oscillators 1 and 3 being orders of magnitude less than the direct power flow between oscillators 1
and 2, as shown in Ref. [6]. A more general conclusion that could be reached here was that,
between the two directly coupled oscillators, the direct power flow is associated with resonant
transmissions; while the indirect power flow is with non-resonant transmissions. The result is
significant as it shows that the indirect power flow may not be important when a resonance occurs
between directly coupled oscillators. In this case, the three series coupled oscillator could be
simplified to the two coupled oscillators model, or in other words, effects of the oscillators other
than the directly coupled two on the direct power flow could be ignored.
Moreover, it is interesting to note that decreasing k2 has similar effects as increasing m2 on the

constants of proportionality b12 and g13: Therefore, when k2 is small, b12 and g13 should be
approaching g12 and 0, respectively, indicating that the direct power flow may not be affected if
the indirect coupling strength is weak [6].
Given as a conceptual illustration, Fig. 2 shows three typical cases associated with the coupling

of oscillators in energy sharing. If the natural frequencies of oscillators 1 and 2 are within
the frequency band Df ; then resonant transmission occurs between oscillators 1 and 2, and the
corresponding power flow is so dominant that the power flow between oscillators 1 and 3 could be
neglected. If the resonance between oscillators 1 and 2 does not occur within the frequency band,
the power flow between indirectly coupled oscillators 1 and 3 might not be ignored. In this case,
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Fig. 2. Coupling between the oscillators.
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depending on whether a resonance occurs between the oscillators 1 and 3 (oscillator 2 acts as a
coupling element), the indirect power flow may also be characterized as resonant or non-resonant
transmissions accordingly. However, unlike the direct power flow which is always dominated by
the resonant transmission between directly coupled oscillators (especially for small damping
values), the non-resonant transmission between indirectly coupled oscillators could play an
important role in the indirect power flow.
For a system with multi-groups of oscillators (i.e. each group of oscillators representing the

resonant modes of each subsystem), Eq. (3) cannot be extended directly because the indirect
power flow is associated with the non-resonant transmission through the intermediate oscillator,
and the energy sum might not apply. However, by assuming that each group of oscillators satisfies
the three key assumptions made above, and, resonance spreads over the frequency band Df
between any pair of the modes in directly coupled groups of oscillators to ensure that the indirect
power flows within the system are negligible, then Eq. (3) can be applied to any directly coupled
oscillator groups. This result thus forms the basis of the classical SEA theory in which only
resonant transmissions between directly coupled oscillators are considered. The third assumption
is necessary to ensure resonance occurs within the frequency band. Quantitatively, the resonance
condition requires that there are at least N ¼ Df =ðf ZÞ modes equally distributed within the
frequency band Df ; where f and Z; respectively, are the averaged natural frequency and damping
loss factor of the modes within this band. This is equivalent to requiring that the modal overlap
Mð¼ nf ZÞ to be greater than unity, where n is the modal density of a subsystem, that is, sufficient
number of modes is required in each subsystem.
For a system with more than two subsystems, if there are not sufficient modes in the subsystem

and the resonance condition is not fully complied, indirect power flows may exist [3,4,7]. For
indirect resonance transmissions, by generally assuming that the modal responses are statistically
independent, an expression similar to Eq. (3) for the indirect power flow might be obtained as

P̄13 ¼ oZ13N1
Ē1

N1
�

Ē3

N3

� �
; (5)
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where subscript ‘13’ denotes an indirect transmission path, and Z13 ¼ g13
� �

N1N3
N3=o; in which N3

is the number of oscillators (i.e. resonant modes) in the subsystem indirectly coupled to group 1.
In this case, we might have

N1Z13 ¼ N3Z31: (6)

A typical example of energy transfer due to indirect resonant transmissions is a limp panel (no
stiffness, thus no resonance) installed between two large acoustic cavities with rigid walls, the two
cavities being the resonant subsystems.
For the indirect non-resonant transmission, however, Eqs. (5) and (6) might not hold because

the modal responses are likely coherent, for which the energy sums may not apply. For practical
structures, this normally happens at low frequencies where only few modes are within the
frequency band of interest.
4. Conclusions

Consistent with the discussions above, Mace [7] characterized three types of analyses, the
classical SEA, the quasi-SEA or SEA like analysis, and the energy flow analysis, in terms of the
behaviour of the loss factor matrix. Specifically, the classical SEA only considers resonant
transmissions between directly coupled subsystems. No indirect coupling paths exist in the model.
The quasi-SEA or SEA-like analysis includes direct coupling paths and indirect coupling paths as
well. The reciprocity relationship is still valid for all power flow paths, indicating that only
resonant transmissions, either direct or indirect, are considered. The energy flow analysis basically
includes all the power transmission paths, not only the resonant but also the non-resonant
transmissions, in the model. Thus the loss factor matrix is generally full and not necessarily
symmetrical. Mace [8] also pointed out that Eq. (3) is exact for a system comprising two
subsystems. For a system with arbitrary number of subsystems, unless the ‘weak coupling’
condition is satisfied, an unique power flow relationship like Eq. (3) might not hold within the
system such that the dynamics of the system has to be solved as a whole, which is therefore
contrary to the spirit of SEA [8]. Langley [9] gave a detailed overview of the assumptions that are
fundamental to the validity of SEA and the conditions that help to promote the behaviours in
compliance with the assumptions. Basically, sufficient number of modes in the subsystems and
equipartition of energy among those resonant modes are the two assumptions fundamental to a
valid classical SEA analysis.
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